
AD-A285 342
IIhhIIEEI/i iin

Learning One More Thing

Sebastian Thrun Tom M. Mitchell J) k
September 1994 SELE ALI,
CMU-CS-94-184 OCT 0 5 1994",

F

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213 iThis document has been approved
for public release and sale; its
distribution is unliiited.

Abstract

Most research on machine learning has focused on scenarios in which a learner faces a single,
isolated learning task. The lifelong learning framework assumes instead that the learner encounters
a multitude of related learning tasks over its lifetime, providing the opportunity for the transfer of
knowledge.
This paper studies lifelong learning in the context of binary classification. It presents the invariance
approach, in which knowledge is transferred via a learned model of the invariances of the domain.
Results on learning to recognize objects from color images demonstrate superior generalization
capabilities if invariances are learned and used to bias'subsequent learning.

This research is sponsored in part by the National Science Foundation under award IRI-9313367, and by the
Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced Research
Projects Agency (ARPA) under grant number F33615-93- 1-1330. Views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily representing official policies or endorsements,
either expressed or implied, of NSF, Wright Laboratory or the United States Government.

94-31659

Keywords: explanation-based neural network learning, learning invariances, lifelong learning,
machine learning, neural networks, object recognition

1 Introduction

Standard inductive supervised learning is concerned with learning an unknown target function from
a finite collection of training data. The framework of supervised learning can be characterized
as follows. Let F denote the set of all potential target functions. For example, in a robot arm
domain F might be the set of all kinematic functions for robots with three joints. It is commonly
assumed that all functions in F are defined over a single input space, denoted by I, and a single
output space, denoted by 0. The learner has a set of hypotheses that it can consider, denoted by
H, which might or might not be different from F. For example, the set H could be the set of all
artificial neural networks with 20 hidden units [Rumelhart et al., 19861, or, alternatively, the set
of all decision trees with depth less than 10 [Quinlan, 19861. Throughout this paper, let us make
the simplifying assumption that all functions in F are binary classifiers, by restricting the output
to 0 = {0, 1}. We will refer to instances that fall into class I as positive instances, and to those
that fall into class 0 as negative instances.

To learn an unknown target function f* E F, the learner is given a finite collection of input-
output examples (training examples)

X =

which are possibly distorted by noise. The goal of the learner is to generate a hypothesis h E H,
such that the deviation

E = E Prob(i) !lf*(i) - h(i)01
iEI

between the target function f* and h on future examples will be as small as possible. Here Prob(i)
is the probability distribution according to which the examples are generated. Prob is generally
unknown to the learner, as is f*.

Standard supervised learning focusses on learning a single target function f*, and training data
is assumed to be available only for this one function. However, if functions in F are sufficiently
related, it can be helpful to have access to training examples of other functions f in F as well.
For example, consider a robot whose task is to find and fetch various objects, using its camera
for object recognition. Here let F be the set of recognition functions for all objects, one for each
potential target object, and the target function f* E F corresponds to some object the robot must
currently learn to recognize. X, the training set, will consist of positive and negative examples
of this object. The task of the learner is to find an h which minimizes E. In order to do so, the
robot must learn to recognize the target object invariant of rotation, translation, scaling in size,
change of lighting and so on. Clearly, the more profound the learner's initial understanding of
these invariances, the fewer training examples in X it will require for reliable learning. Because
these invariances are common to all functions in F, images showing other objects can provide
additional information for learning about these invariances, and hence augment the training set X.

This example illustrates the lifelong learning framework [Thrun and Mitchell, 19931. In
lifelong learning, a collection of related learning problems is encountered over the lifetime of the
system. When learning the n-th task, the leatner may therefore employ knowledge gathered in the

:ty ','odes

A1 '" or
] " -

"* a space of possible hypotheses H

"* a set of training examples X of some unknown target function f* E F, drawn
with probability distribution Prob.

"* in lifelong learning: a collection of support sets Y = {Xk }, which characterize
other functions fk E F

Determine:

a hypothesis h E H that minimizes 1 Prob(i) IIf*(i) - h(i)II
iEl

Table 1: Standard supervised learning and lifelong supervised learning.

previous n - 1 tasks to improve its performance. This paper considers a particular form of lifelong
learning in which the learning tasks correspond to learning boolean classifications (concepts), and
in which the previous experience consists of training examples of other classification functions
from the same family F. More formally, in addition to the set of training examples X for the
target function f *, the learner is also provided sets of examples

Xk = {(i,gk(i))} (k = 1,..., IGI)

of other functions G = {g,,g2,...} C F taken from the same function family F. Since this
additional data supports learning f*, we shall call each Xk a support set for X. The set of all
available support sets, {XI, : k = I,..., IGIJ, is denoted by Y. Notice that the support sets Xk

are not necessarily generated according to the same probability distribution.

Table I summarizes the problem definitions of standard supervised learning and the lifelong
supervised learning problem considered here. In lifelong learning, the learner is given a collection
of support sets Y in addition to the training set X and the hypothesis space Y.

Support sets can be defined for a variety of real-world learning tasks. For example, consider
a personal computer assistant whose task it is to recognize its user's handwriting. F is the set
of all mappings from hand-drawn curves to letter labels, one for each potential user. For each
user, i.e., for each f E F, the assistant could start learning to recognize handwriting from scratch.
However, many characteristics will co-occur for multiple users, and one would expect a learner
which incorporates examples from other users to generalize better. A second example, to which
inductive machine learning techniques have frequently been applied, is stock market prediction.
While many of the successful techniques in this domain remain unpublished, it seems to be well-
accepted that stocks can be predicted better by learning from data regarding entire families of
stocks, rather than learning about a single stock in isolation. Clearly, certain patterns can be found
that apply to various stocks, and knowing about these regularities when training data is limited
will most likely improve the prediction accuracy of a learning system.

2

The lifelong learning framework studied in this paper differs from standard supervised learning
in that in addition to the training data X, support sets Y are also provided. This raises two
fundamental questions:

1. How can a learner use support sets to generalize more accurately?

2. Under what conditions will a learner benefit from support sets? Obviously, the more closely
related the functions in F, the better. But exactly what relation among these functions is
required in order for support sets to be useful? What happens if the functions in F are not
related at all? Can support sets mislead generalization and, if so, under what conditions?

This paper does not provide general answers to these questions. Instead, it proposes one
particular approach, namely learning invariance functions, which relies on certain assumptions on
the function set F. It also presents empirical evidence that this approach to using support sets can
significantly improve generalization accuracy when learning to recognize objects based on visual
data.

2 The Invariance Approach

The invariance approach first learns an invariance function o from the support sets in Y. This
function is then used to bias the learner as it selects a hypothesis to fit the training examples X of
the target function.

2.1 Invariance Functions

Let Y = {Xk} be a collection of support sets for learning f* from X. Recall our assumption
that all functions in F have binary output values. Hence, each example in a support set is either
positive (i.e., output 1) or negative (i.e., output 0). Consider a target function, fk E F with
k E {I..., JFJ}, and a pair of examples, say i E I andj E I. A local invariance operator
"rk : I x I -- {0, 1 } is a mapping from a pair of input vectors defined as follows:

J I if A(i) = fk(j) = I
,(i,j) = 0 if fk(i) # A(J)

notdefined if fk (i) = fk(j) =0

Basically, the local invariance operator indicates whether both instances are members of class I
(positive examples) relative to fk. If rk(i,j) = 1, then fk is invariant with respect to i and j.
Notice that positive and negative instances are not treated symmetrically in r.

The local invariance operators rk (k = I,..., IFI) define a (global) invariance function for F,
denoted by a : I x I {0, 1}. For two examples, i and j, ao(i,j) is 1 if there exists a k for
which rk(i,j) = 1. Likewise, a(i,j) is 0 if there exists a k for which rk(i,j) = 0:

1 if 3k E l,..., IFI} with Tk(i,j) = 1
0(i,j) = if3kE { ,.... JFj} withrk(i,j)=0

notdefined otherwise

3

The invariance function behaves like an invariance operator, but it does not depend on k. It is
important to notice that the invariance function can be ill-defined. This is the case if there exist
two examples which in one target function both belong to class 1, whereas in another they fall into
different classes:

3i,j E I,k,k' E {1,...,IFI} : rk(i,j) = I A Tk,(i,j) = 0

In such cases the invariance mapping is ambiguous and is not even a mathematical function. A
class of functions F is said to obey the invariance property if its invariance function is non-
ambiguous'. The invariance property is a central assumption for the invariance approach to
lifelong classification learning.

The concept of invariance functions is quite powerful. Assume F holds the invariance property.
If a is known, every training instance i for an arbitrary function fk E F can be correctly classified,
given there is at least one positive instance of fk available. To see, assume ipo, E I is known to be
a positive instance for fk. Then for any instance i E I, a(i, iZo) will be 1 if and only if fk(i) = 1.

Although the invariance property imposes a restriction on the function family F, it holds true for
quite a few real-world problems. For example, a function family obeys the invariance property
if all positive classes (of all functions fk) are disjoint. One such function family is the family of
object recognition functions defined over distinct objects.

2.2 Learning with Invariants

In the lifelong learning regime studied in this paper, a- is not given. However, an approximation
to o- can be learned. Since ao does not depend upon the specific target function f*, every support
set Xk E Y can be used to train a', as long as there is at least one positive instance available in Xk.

For all k E { I,..., IGil}, training examples for a" are constructed from examples i, j E Xk:

((i,j), rk,(i,j))

Here rK must be defined, i.e., at least one of the examples i and j must be positive under fk. In
the experiments described below, ao is approximated by training an artificial neural network using
the Backpropagation algorithm [Rumelhart et al., 19861.

Once o, has been learned, one way to mimic f* is to pick an arbitrary positive training instance
in X, and to use o" for classification, as described above. However, ao might not be accurate enough
to classify correctly, usually because of modeling limitations, noise, or lack of training data. In
fact, the experimental results described in the next section indicate that there are better ways to
employ the invariance network.

2.3 Extracting Slopes to Guide Generalization

The remainder of this section describes an alternative approach which employs a hybrid neural
network learning algorithm for learning f*. This algorithm is a special case of both the Tangent-

'It is generally acceptable for the invariance function to be ambiguous, as long as the likelihood for generating
ambiguously classified pairs of examples is zero.

4

XX X2 X3 X1 X2 ;3 Xj X2 X3

Figure 1: Fitting values and slopes: Let f* be the target function for which three examples
(x1, f*(x1)), (X2 ,2f*(x2)), and (x 3, f*(x 3)) are known. Based on these points the learner might
generate the hypothesis hi. If the slopes are also known, the learner can do much better: h,.

Prop algorithm [Simard et al., 19921 and the explanation-based neural network learning (EBNN)
algorithm [Mitchell and Thrun, 19931. Here we will refer to it as EBNN.

Suppose we are given a training set X, and an invariance network a which has been trained
using a collection of support sets Y. We are now interested in learning f*. One could, of course,
ignore the invariance network and the support sets altogether and train a neural network purely
based on the training data X. The training set X imposes a collection of constraints on the output
values for the hypothesis h. If h is represented by an artificial neural network, as is the case in the
experiments reported below, the Backpropagation (BP) algorithm can be used to fit X.

EBNN does this, but it also derives additional constraints using the invariance network. More
precisely, in addition to the value constraints in X, EBNN derives constraints on the slopes
(tangents) for the hypothesis h. To see how this is done, consider a training example i, taken from
the training set X. Let ip, be an arbitrary positive example in X. Then, o(i, ipo) determines
whetner i and iZ's belong to the same class- information that is readily available, since we are
given the classes of i and ip. However, predicting the class using the invariance network also
allows us to determine the output-input slopes of the invariance network. These slopes measure the
sensitivity of class membership with respect to the input features in i. This is done by computing
the partial derivative of a with respect to i at (i, ipos):

jio (i) " -- 0 0 (,i p

Via(i) measures how infinitesimal changes in i will affect the classification of i. Since ar(-, ip,) is
an approximation to f*, Via(i) approximates the slope Vif (i). Consequently, instead of fitting
training examples of the type (i, f (i)), EBNN fits training examples of the type

(i, f*(i),Vif*())

Gradient descent can be used to fit training examples of this type, as explained in [Simard et al.,
19921. Fig. 1 illustrates the utility of this additional slope information in function fitting.

Notice if multiple positive instances are available in X, slopes can be derived for each one of

5

1. Let Xpos C X be the set of positive training examples in X.

2. Let X' = 0

3. For each training example (i, f*(0i)) E Xpo do:

(a) Compute Via(i) =X 1Ža(i)(i s) using the invariance network a.
XPOSIi, E XprA

(b) LetX' = X' + (i,f*'(i),Vza(i))

4. Fit X'.

Table 2: Application of EBNN to learning with invariance networks.

them. In this case, averaged slopes are used to constrain the target function:
1 r(i, i•~)(|

Vio(i) := I- E (1>

Here Xp C X denotes the set of positive examples in X. The application of the EBNN algorithm
to learning with invariance networks is summarized in Table 2.

Generally speaking, slope information extracted from the invariance network is a linear ap-
proximation to the variances and invariances of F at a specific point in L. Along the invariant
directions slopes will be approximately zero, while along others they will be large. For example, in
the object recognition domain described above, it might happen that color is an important feature
for classification while brightness is not. This is typically the case in situations with changing
illumination. In this case, the invariance network could learn to ignore brightness, and hence the
slopes of its classification with respect to brightness would be approximately zero. The slopes for
color, however, would be large, given that slight color changes imply that the object would belong
to a different class.

When training the classification network, slopes provide additional information about the
sensitivity of the target function with respect to its input features. Hence, the invariance network
can be said to bias the learning of the classification network. However, since EBNN trains on both
slopes and values simultaneously, errors in this bias (incorrect slopes due to approximations in the
learned invariance network) can be overturned by the observed training example values in X.

3 Example

3.1 Object Recognition

To illustrate the invariance network in a real-world domain, we collected a database of 700 color
camera images of seven different objects, as depicted in Fig. 2 (left columns).

6

Object color size
bottle green medium
hat blue and white large
hammer brown and black medium
can red medium
book yellow depending on perspective
shoe brown medium
glasses black small

The objects were chosen so as tc provide color and size cues helpful to their discrimination.
The background of all images consisted of plain, white cardboard. Different images of the same
object varied by the relative location and orientation of the object within the image. In 50% of
all recordings, the location of the light source was also changed, producing bright reflections at
random locations in various cases. In some of the images the objects were back-lit, in which case
they appeared to be black. Fig. 3 shows examples of two of the objects, the shoe and the glasses.
100 images of each object were recorded.

In all our experiments images were encoded by a 300-dimensional vector, providing color,
brightness and saturation information for a down-scaled image of size 10 by 10. Examples for the
down-scaled images are shown in Figures 2 (right columns) and 3. Although each object appears
to be easy to recognize from the original image, in many cases we found it difficult to visually
classify objects from the subsampled images. However, subsampling was necessary to keep the
networks at a reasonable size.

The set of target functions, F, was the set of functions that recognize objects, one for each
object. For example, the indicator function for the bottle, fbol., was I, if the image showed a
bottle, and 0 otherwise. Since we only presented distinct objects, all sets of positive instances
were disjoint. Consequently, F obeyed the invariance property. The set of hypotheses H was the
set of all artificial neural networks with 300 input units, 6 hidden units, and I output unit, as such
a network was employed to represent the target function.

The objective was to learn to recognize shoes, i.e., f* = fsho. Five other objects, namely the
bottle, the hat, the hammer, the can and the book, were used to construct the support sets V. In
order to avoid any overlap in the training set X and the support sets in Y, we exclusively used
pictures of a seventh object, glasses, as counterexamples for fAho.

3.2 Training the Invariance Network

Each of the five support sets in Y, Xbonle, Xh.,, Xh.mme, XYa, and Xok, contained 100 images
of the corresponding object (positive examples) and 100 randomly selected images of other
objects (negative examples). When constructing training examples for the invariance network, we
randomly selected a subset of 1,000 pairs of images, 800 of which were taking for training and
200 for cross-validation. 50% of the final training and cross-validation examples were positive
examples for the invariance network (i.e., both images showed the same object), and the other
50% were negative examples.

7

Figure 2: Objects (left) and corresponding network inputs (right). A hundred images of a bottle.
a hat, a hammer, a coke can, and a book were used to train and test the invariance network.
Afterwards, the classification network was trained to distinguish the shoe from the glasses.

In several attempts to construct an invariance network, using a variety of network topologies
with up to two hidden layers, we achieved a maximum generalization accuracy of 62.0%. This
result was somewhat unsatisfactory, since random guessing, by comparison, results in 50% ac-
curacy. When applied to the two remaining unseen objects, the shoe and the glasses, the best
invariance network classified only 53.2% of all image pairs correctly.

In order to improve these results, we applied a learning technique that focusses learning
by incorporating additional training information, adopted from ISuddarth and Kergosien, 19901.
[Caruana, 19931. Their technique rests on the assumption that in addition to the !earning task of
interest, some related learning tasks, using the same input representation and the same training
data (with different target values), are available. Instead of training on a single task, a network is

8

Figure 3: Images, along with the corresponding network inputs, of the objects shoe and glasses.
These examples illustrate some of the invariances in the object recognition domain.

trained on all tasks simultaneously, using an augmented output layer that provides additional output
units for the additional tasks. This technique, which is called "learning by hints" or "multi-task
learning," has been found to yield better generalization accuracies, which can be attributed to the
fact that all of these tasks share the same hidden units. If tasks are sufficiently related, it allows
better hidden representations to be developed, resulting in improved generalization. In fact, this
approach establishes an alternative method for the lifelong learning problem, as discussed in Sect.
4.

In the object recognition domain, a task that is obviously related to determining whether or not
two images belong to the same class is the task of actually classifying the two images. Hence, we
added two sets of 5 output units to the invariance network, which were trained to determine the
classification of the object shown in either image. A local I -of-n encoding was used to encode
the 5 different object classes. Hence, the augmented invariance network had I I output units, one
for determining if the two images are the same or not and 10 for classifying images. The latter 10
units, however, were used exclusively during training the invariance network, and did not play any
part in subsequently applying the invariance network. The classification accuracy of this network
was significantly better than the accuracy of the single output network reported above. After
training, the augmented network managed to determine whether or not two objects belong to the
same class with 79.5% generalization accuracy. It also exhibited 67.0% classification accuracy in

9

the new task, the recognition of the shoe. Obviously, both accuracy rates are significantly better

than those achieved using the single output network.

3.3 Lamning to Recognize Shoes

Having trained the invariance network, we were now interested in training the classification
network. The network used throughout the experiments reported here consisted of 300 input units,
6 hidden units, and I output unit-no effort was made to optimize the network topology. A total of
200 examples of images showing the shoe and the glasses were available for training and testing
the shoe classification network.

The central question regarding the invariance approach is to what extent the invariance network,
when used to bias the target function, improves the generalization accuracy of the classification
network.

In order to elucidate the role of the invariance network, we trained the classification network
using only two training examples: a randomly selected image of the shoe (positive example),
and a randomly selected image of the glasses (negative example). Slopes were computed using
the previously learned invariance network. Since the counterexamples to the target concept, the
glasses, form a unique class of images that do not overlap with any other positive class from the
support sets, slopes could also be derived using negative examples. Instead of using Eq. (I), slopes
were extracted from the invariance net using the extended mixture:

Vi(i) I O(i ipos) E (i (2)
1 I PN • t ineSEX,,l

Here Xt,, C X is the set of positive examples in X, and X,. = X - X.o is the set of negative
examples. Eq. (2) differs from Eq. (1) by taking also negative examples 1,,s into account, which
is justified by the fact that images of glasses form a class disjoint from all other objects.

Fig. 4 shows the average generalization curve as a function of training epochs with and
without the invariance network. The generalization accuracy here was measured over all 200
available images. The curve shows the generalization accuracy averaged over 100 experiments,
each trained using one randomly selected positive and one randomly selected negative example.2
Without using the invariance approach, the average generalization accuracy after 10,000 training
epochs is 59.7%. However, using EBNN with the invariance network increases accuracy to 74.8%
due to the information conveyed by the invariance slopes. This difference can be assessed in
multiple ways. In terms of residual error, Backpropagation eyhibits a misclassification rate that is
60.1% larger than that of EBNN. A second interpretation is to look at the performance increase.
which is defined as the difference in classification accuracy after learning and before learning,
assuming that the accuracy before learning is 50%. 3:NN's performance increase is 24.8%, which
is 2.6 times better than Backpropagation's 9.7%.

For example, if a neural network is trained using the two images of a shoe and the glasses
depicted in Fig. 2, plain Backpropagation classifies only 52.5% of the testing images correctly.

2Note we used a fast learning method that adapted the amount of momentum on-line during learning.

10

100%

95%

90%

s0'

805

is% EBNN
70%

605l

50s 0 1000 2000 3000 4000 5000 6000 7000 8U00 9000 10000

train.ing epochs

Figure 4: Training curves, with (solid line) and without (dashed line) the invariance network and
EBNN, measured on an independent test set and averaged over 100 runs, after providing one
positive and one negative training example.

Here the generalization rate is particularly poor, since the location of thK objects differ, and
Backpropagation mistakenly considers location the crucial feature for object recognition. EBNN
using the invariance network produces a network that is much less sensitive to object location,
resulting in a 85.5% generalization accuracy in this particular example.

Note that the network learned by EBNN performs significantly better than the invariance
network itself used as a classifier (67.0%). This is because EBNN is trained on images of the shoe
and the glasses, while the invariance network is not.

The importance of mixing slopes becomes clear by looking at the accuracy that is achieved
when slopes are computed differently. If slopes are only extracted by comparing an image with
itself (i.e., both images of the invariance network are equivalent), the average final accuracy is
66.4%. When only pairwise different images are used as input to the invariance network, the
resulting accuracy is 71.8%. Both accuracies are significantly smaller than the 74.8% accuracy
achieved by mixing the two. We also tried experiments weighting the mixtures of slopes. In one
case, we used the prediction accuracy of the domain theory (LOB*) as the weighting factor: The
more accurate the invariance network for a particular training example, the stronger the weight of
the corresponding slope in the mixture. This strategy, which has been found to be useful across a
variety of domains [Mitchell et al., 19941, [Thrun, 19941 resulted about equivalent performance
(74.1%) in the object recognition domain.

The reader should notice that all these results refer to the classification accuracy after 10,000
training epochs, using just one positive and one negative training example. As can be seen in
Fig. 4, Backpropagation suffers from some over-fitting, as the accuracy drops after a peak at
about 2,050 training epochs. The average classification accuracy at this point in time is 61.3%.
However, due to lack of data, it is impossible in this domain to use early stopping methods that
rely on cross validation, and it is unclear whether such methods would have improved the results
for Backpropagation significantly.

Fig. 5a shows analogous results for training with two examples of both shoes and glasses.
Here, the difference between EBNN and Backpropagation is even wider. EBNN achieves 82.9%

11

1001 00

95% 9 EBNN

90% 90%

EBNN85% 5

80%

"lt7 00

6S% - 5%

60

55S%

0 1000 2000 0000 4000 5000 6000 7000 6000 9000 10000 7 9

training *poclw trainling Xwlp..

Figure 5: (a) Averaged generalization accuracy when training on two positive and two negative
training examples. (b) Generalization accuracy for different number of training examples after
10,000 training epochs.

final accuracy, as opposed to 64.8% by plain Backpropagation. Consequently, Backpropagation's
misclassification rate exceeds that of EBNN by 105.8%. EBNN's performance increase is 32.9%,
which is 2.21 times better than Backpropagation's 14.8%.

Results for experiments with larger training set sizes are depicted in Fig. 5b. As can be seen
from this figure, the difference between the methods decreases as the number of training instances
increases. EBNN, however, continues to perform slightly better than plain Backpropagation. This
matches our expectations, as the need for background knowledge decreases as the number of
training examples increases. However, the primary focus of this paper is learning when training
data in X is scarce.

3.4 The Role of the Invariance Network

The improved classification rates, which illustrate the successful transfer of knowledge from
the support sets via the invariance network, raise the question what exactly are the invariances
represented in this network. What type information do the slopes convey?

A plausible (but only approximate) measure of the importance of a feature is the magnitude
of its slopes. The larger the slopes, the larger the effect of small changes in the feature on the
classification, hence the more relevant the feature. In order to empirically assess the importance
of features, average slope magnitudes were computed for all input pixels, averaged over all 100
pairs of training instances. The largest average slope magnitude was found for color information:
0.11. In comparison, saturation slopes were, on average, only 0.063 (this is 57% of the average
for color slopes), and brightness slopes only 0.056 (5 1 %).

These numbers indicate that, according to the invariance network, color information was most
important for classification. To verify this hypothesis, we repeated our experiments omitting some
of the image information. More specifically, in one experiment color information was omitted, in
a second saturation, and brightness in a third. The results

12

standard with
supervised support sets

invariance network classification, no EBNN 67.0%
1 training example per class 59.7% 74.8%
same, after 2,050 training epochs 61.3%
image shown in Fig. 3 52.5% 85.5%
2 training examples per class 64.8% 82.9%
only objects of same class used for deriving slopes 66.4 %
only objects of different class used for deriving slopes 71.8%
weighting slopes by classification accuracy 74.1%
no color 52.4% 57.9%
no saturation 59.0% 72.9%
no brightness 58.7% 76.3%

Table 3: Summary of the classification results listed in the paper. All numbers are average
classification rates on unseen testing data.

without invariance network with invariance network

no color 52.4% 57.9%
no saturation 59.0% 72.9%
no brightness 58.7% 76.3%
full information 59.7% 74 1 %

confirmed our belief that color information indeed dominates classification. It is clear that without
color the generalization rates in the testing set are poor, although EBNN still generalizes better. If
saturation or brightness is omitted, however, the generalization rate is approximately equivalent to
the results obtained for the full images reported above. However, learning required significantly
more training epochs in the absence of brightness information (not shown here). These and other
results reported here are summarized in Table 3.

Fig. 6 shows average slope matrices for the target category (shoes) with respect to the three
input features, color, brightness and saturation. Grey colors indicate that the average slope for an
input pixel is zero. Bright and dark colors indicate strongly positive and strongly negative slopes,
respectively. Notice that these slopes are averaged over all 100 explanations used for training.

As is easily seen, average color slopes vary over the image, showing a slight positive tendency
on average. Average saturation slopes are approximately zero. Brightness slopes, however, exhibit
a strong negative tendency which is strongest in the center of the image. One possible explanation

for the latter observation is the following: Both the shoe and the glasses are dark compared to the
background. Shoes are, on average, larger than glasses, and hence fill more pixels. In addition,
in the majority of images the object was somewhere near the center of the image, whereas the
border pixels showed significantly more noise. Lack of brightness in the image center is therefore
a good indicator for the presence of the shoe, as is clearly reflected in the brightness slopes derived

13

\J

Figure 6: Slopes of the target concept (glasses) with respect to (a) color, (b) saturation, and (c)
brightness. Every slope is averaged over 400 explanations. White (black) color represents positive
(negative) values.

from the invariance network. The less obvious results for color and saturation can be attributed to
the effect that optimal classifiers are non-linear in color and saturation. In order to discriminate
objects by color, for example, the network has to spot a specific interval in color space. Hence,
the correct slopes can be either positive or negative depending in the particular color of a pixel,
cancelling each other out in this plot.

As pointed out earlier, slopes provide first-order information, and invariances may well be
hidden in higher-order derivatives. However, both the superior performance of EBNN as well as
the clear correlation of slope magnitudes and generalization accuracy show that EBNN manages
to extract useful invariance information in this domain, even if these invariances defy simple
interpretation.

4 Alternative Approaches

While in this paper we have presented one particular approach to lifelong learning in the context
of classification, many others are possible and several can be found in recent literature.

e Learning internal representations. Other researchers report techniques to develop more
appropriate hidden layer representations from multiple tasks. For example, Pratt proposed a
method which transfered information by using an internal representation that was developed
in earlier learning tasks [Pratt, 19931. A similar technique has been proposed in [Sharkey and
Sharkey, 19921. A second example of learning internal representations using multiple target
functions is Caruana's multi-task learning algorithm. In his approach. multiple, related tasks
are trained simultaneously in a single neural network, forcing the networks to share hidden
units. He reports that hidden internal representations are developed which lead to improved
generalization [Caruana, 19931. Notice that these results match our findings when training
the invariance network. All these approaches develop better internal representations of the
data by considering multiple functions in F with the goal of improving generalization.

14

" Spotting relevant features. Another approach, which bears close resemblance to learning
invariances and learning representations, is to spot irrelevant features [Littlestone, 19871,
[Caruana and Freitag, 1994). If the set of target functions F is such that-across the
board-only a subset the features is relevant (e.g., the time of day may not matter for object
recognition), a learning system can employ support sets to find the most relevant features.
Once they are discovered, the remaining hypothesis space is smaller, which reduces the
sample complexity in learning. Notice that EBNN weakens the influence of irrelevant
features through zero-valued slopes EBNN.

" Adapting the data. A different approach to lifelong learning is to modify the dr either in
the training set X or in the support sets Y. For example, imagine there is a ge! •urpose
module that can be applied to all functions in F, but it requires that data is pre ed, and
each f E F requires an individual filter. This is the case, for example, in approaches to
speaker adaptation. Speaker adaptation comprises a family of techniques studied in speech
recognition, in which a computer quickly adapts to the accent, voice, pitch, or speed of
an individual speaker (see [Hild and Waibel, 19931 for an example). Typically, speech is
translated to a more machine-understandable speech by a user-specific module that allws
quick adaptation. Speaker adaptation is an example of an approach in which training data
X is adapted to fit previously learned modules.

In essence, all these approaches change the bias of the function approximator. They differ in the
way bias is represented, and in the assumption they make on the underlying function class F.

A variety of approaches aim to change the bias of an inductive function approximator in a more
direct way. For example, Sutton [Sutton, 19921 describes an approach that employs Kalman filters
to determine optimal learning rates. Atkeson [Atkeson, 199 11 proposes techniques for optimizing
the distance metric in a nearest neighbor generalizer. In [Maron and Moore, 19941, an incremental
method for the selection of nearest neighbor models is described. Starting with a hypothesis set
H, this technique uses training data and cross-validation to gradually reduce H. However, many
of the approaches listed here have not been proposed in the context of learning more than one task.

It should be noted that the invariance approach bears some resemblance to training schemes
found in the context of autonomous driving and letter recognition. Simard and colleagues [Simard
et al., 19921 employed the Tangent-Prop algorithm for recognizing hand-printed letters. Since
letter recognition should be invariant to translation and rotation, they manually provided zero-
valued target slopes in the directions of these invariances, very much like those automatically
generated by EBNN. Pomerleau [Pomerleau, 19891 reports a similar technique that was used
for training an autonomous vehicle. Based on knowledge about the relation of camera images
and steering direction, he constructed additional training data that were used when training the
network. His technique can be viewed as an approximative version of Simard's approach. In both
cases, domain knowledge was employed to incorporate invariances into neural network learning.
The invariance approach presented here differs in that a model of the invariances is constructed
from training data, making it applicable in situations where the appropriate expert knowledge is
not available from a human designer.

15

5 Discussion

In the lifelong learning framework, the learner faces a collection of related learning tasks. The
challenge of this framework is to transfer knowledge across tasks, in order to generalize better
from fewer training examples of the target function itself.

The experimental results presented in this paper prcvide clear evidence of superior general-
ization in the object recognition domain, when invariances learned from related tasks are used
to augment the training data for a new object recognition task. However, the success of this
invariance approach relies on several critical assumptions:

" Well defined invariance functions rest on the assumption that F obeys the invariance property.
However, even if the invariance property is only approximately satisfied by F, the support
sets can be used to train an invariance network. This network will, in the ideal case, approach
the expected a-value. The object recognition domain presented above provides an example
in which the invariance property may hold only approximately. This is because different
objects may look alike in the coarse-grained, noisy images, in which case they violate the
invariance property.

" It is also assumed that functions in F possess certain invariances which can actually be
learned by the invariance network. This fact does not follow from the invariance property.
The exact invariances that will be learned depend crucially on the input representation and
function approximator used for a.

" We also assumed that the output space 0 of functions in f is binary. However, this
assumption is not essential for the invariance approach. In principle, invariance functions
may be defined for arbitrary, high-dimensional output spaces, given that a notion of difference
between output vectors is available. For example, if the function space F contains multi-
dimensional real-valued functions of the type f : Wm , Rn, the canonical vector difference
Tk : R2,, , R with Trk(i,j) = Ifk(i) - fk(j)I (i, E J R) establishes a local invariance
operator and hence an invariance function. This function, however, differs from a used
in the binary case in that no clear class boundaries are defined, and no distinction is made
between positive and negative examples.

In the experiments reported above, all three assumptions were at least approximately fulfilled.
We conjecture that the real world offers a variety of tasks where learned invariances can boost
generalization. For example, problems such as face recognition, cursive handwriting recognition,
stock market prediction and speech recognition, which possess non-trivial but important invari-
ances. For example, consider the problem of learning to recognize faces of various individuals.
Here certain aspects are important for the successful recognition (e.g., the distance between the
eyes), whereas others are less important (e.g., the direction in which the person is looking). After
training on a number of individuals, we conjecture that the invariance network might grasp some
of these invariances, reducing the difficulty of learning faces of new individuals.

It should be noted that in this paper lifelong learning is applied to one particular class of learning
problems, namely binary classification tasks. In this context, several restrictive assumptions have

16

been made, most of which are adopted from standard supervised learning. It is assumed that all
functions (and hence all instances in X and Y) are drawn from a monolithic function class F, in
which all functions share the same input and output space. Moreover, 0 is restricted to be {0, l }.
In applying the invariance network, further assumptions were made on the relation of the target
functions in F.

The lifelong learning framework, however, is more general. It only specifies that a learner
encounters a multitude of related learning tasks over its entire lifetime. The task of the learner
need not necessarily be classification. For example, lifelong learning can be studied in function
approximation, unsupervised learning, control learning or other learning paradigms. It is also not
required that the support sets, which contain related training data, and the training set stem from
a class of functions sharing a common input and output space. For example, control learning
may benefit from training data collected in a classification domain, although the control function

operates over different input and output spaces.

For example, in [Mitchell and Thrun, 19931 and [Thrun, 1994] control learning is studied in a
lifelong learning framework. In control learning, the target function f* is a control function which
maps percepts, denoted by s E S, to actions, denoted by a E A:

fP : S---- A

Actions, when executed by the agent, result in some scalar penalty/reward, and the goal of learning
is to maximize reward. A popular method for learning control is reinforcement learning [Barto
et al., to appear], [Sutton, 19901, [Watkins and Dayan, 19921. Reinforcement learning constructs
value function that can be used to select optimal actions. Embedded in a lifelong learning
framework, a control learning agent may face a variety of control learning tasks over its lifetime.

As shown in [Mitchell and Thrun, 19931, learning action models, which are functions of the type

g : S --- + S,

can significantly reduce the amount of training required for subsequent control learning tasks.
EBNN is used to transfer knowledge across tasks, as in the invariance approach presented in this
paper.

The lifelong learning problem can also be understood as a meta-level learning problem.
Consider, for example, its application to classification, as presented in this paper. Each training

example at the meta-level correspondg to a whole support set Xk at the base-level. The set of
support sets Y = {Xk } thus forms the set of training examples at the meta-level. The testing set is
X, which is the set of training examples for the target function f* at the base-level. A convenient

assumption to be made is that the base-level hypothesis space H is a superset of F. Then, the
hypothesis space at the meta-level is a set of restrictions on H, or, in other words, a set of subsets
of H. The goal of learning on the meta-level is to reconstruct F (or find a minimal superset of
F) as a hypothesis space for the base-level. Each training example Xk reduces the meta-level
hypothesis space. If F is a candidate hypothesis in the meta-hypothesis space, one expects that in
the limit H = F is the only hypothesis left at the meta-level. Since each support set characterizes
a function in F, every training example at the meta-level will be a positive example of the target

17

concept F. Clearly, there can be no useful bias-free learning at the meta-level any more than there
can be at the base-level.

However, despite the striking similarities between standard supervised learning and meta-
learning, there are significant differences. Given a particular target function, f E F, the ultimate
goal of learning is to minimize the prediction error for f*. Recognizing F is a secondary goal,
since it is useful only in support of learning f *. X, which establishes a single testing pattern in
the meta-level, does not specify f* uniquely. Instead, it provides a potentially small and noisy set
of input-output examples of f*. In addition, examples on the meta-level may vary in length, since
the number of training examples in a support set may vary. In order to learn at the meta-level,
more flexible encodings are needed than those that are typically studied in supervised learning.
The invariance network establishes one particular such encoding, which works only if the original
function space F holds the invariance property. The invariance network does not directly describe
a hypothesis class-rather, it imposes shape constraints that, when incorporated into the training
of the base-level recognizer, constrain its space of hypotheses.

The central question of this paper is whether learning can be made easier when the learner
has already learned other related tasks. Will a system that is "trained" to learn generalize better
than a novice learner? This paper provides encouraging results in an object recognition domain.
However, most questions that arise in the context of lifelong learning still lack satisfactory, more
general answers. We expect that future research in this direction will be important to going beyond
the intrinsic bounds associated with learning single isolated functions.

Acknowledgment

We thank Astro Teller for thoughtful comments on an earlier draft of this paper.

References

[Atkeson, 19911 Christopher A. Atkeson. Using locally weighted regression for robot learning.
In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pages
958-962, Sacramento, CA, April 1991.

[Barto et al., to appear] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to
act using real-time dynamic programming. Artificiil Intelligence, to appear.

[Caruana and Freitag, 19941 Rich Caruana and Dayne Freitag. Greedy attribute selection. In
Proceedings of the Eleventh International Conference on Machine Learning, San Mateo, CA,
1994. Morgan Kaufmann.

(Caruana, 19931 Richard Caruana. Multitask learning: A knowledge-based of source of inductive
bias. In Paul E. Utgoff, editor, Proceedings of the Tenth International Conference on Machine
Learning, pages 41-48, San Mateo, CA, 1993. Morgan Kaufmann.

18

[Hild and Waibel, 1993] Hermann Hild and Alex Waibel. Multi-speaker/speaker-independent
architectures for the multi-state time delay neural network. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing, pages 11255-258. IEEE, April 1993.

[Littlestone, 1987] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2:285-318, 1987.

[Maron and Moore, 19941 Oded Maron and Andrew W. Moore. Hoeffding races: Accelerating
model selection search for classification and function approximation. In Advances in Neural
Information Processing Systems 6, San Mateo, CA, 1994. Morgan Kaufmann.

[Mitchell and Thrun, 19931 Tom M. Mitchell and Sebastian B. Thrun. Explanation-based neural
network learning for robot control. In S. J. Hanson, J. Cowan, and C. L. Giles, editors, Advances
in Neural Information Processing Systems 5, pages 287-294, San Mateo, CA, 1993. Morgan
Kaufmann.

[Mitchell et al., 1994] Tom M. Mitchell, Joseph O'Sullivan, and Sebastian B. Thrun. Explanation-
based learning for mobile robot perception. In Workshop on Robot Learning, Eleventh Confer-
ence on Machine Learning, 1994.

[Pomerleau, 19891 D. A. Pomerleau. ALVINN: an autonomous land vehicle in a neural network.
Technical Report CMU-CS-89-107, Computer Science Dept. Carnegie Mellon University, Pitts-
burgh PA, 1989.

[Pratt, 1993] Lori Y. Pratt. Discriminability-based transfer between neural networks. In J. E.
Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information Processing
Systems 5, San Mateo, CA, 1993. Morgan Kaufmann.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[Rumelhart et al., 19C'6] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-
ing internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland,
editors, Parallel Distributed Processing. Vol. I + I1. MIT Press, 1986.

[Sharkey and Sharkey, 19921 Noel E. Sharkey and Amanda J.C. Sharkey. Adaptive generalization
and the transfer of knowledge. In Proceedings of the Second Irish Neural Networks Conference,
Belfast, 1992.

[Simard et al., 1992] Patrice Simard, Bernard Victorri, Yann LeCun, and John Denker. Tangent
prop - a formalism for specifying selected invariances in an adaptive network. In J. E. Moody,
S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information Processing Systems
4, pages 895-903, San Mateo, CA, 1992. Morgan Kaufmann.

[Suddarth and Kergosien, 19901 Steven C. Suddarth and Y. L. Kergosien. Rule-injection hints as
a means of improving network performance and learning time. In Proceedings of the EURASIP
Workshop on Neural Networks, Sesimbra, Portugal, Feb 1990. EURASIP.

19

[Sutton, 19901 Richard S. Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning, June 1990, pages 216-224, 1990.

[Sutton, 19921 Richard S. Sutton. Adapting bias by gradient descent: An incremental version of
delta-bar-delta. In Proceeding of Tenth National Conference on Artificial Intelligence AAAI-92,
pages 171-176, Menlo Park, CA, July 1992. AAAI, AAAI Press/The MIT Press.

[Thrun and Mitchell, 1993] Sebastian B. Thrun and Tom M. Mitchell. Lifelong robot learning.
Robotics and Autonomous Systems, 1993. (to appear). Also appeared as Technical Report
IAI-TR-93-7, University of Bonn, Dept. of Computer Science III.

[Thrun, 19941 Sebastian B. Thrun. A lifelong learning perspective for mobile robot control. In
Proceedings of the IEEEIRSJ/GI International Conference on Intelligent Robots and Systems,
September 1994. (to appear).

[Watkins and Dayan, 19921 Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8:279-292, 1992.

20

